Answer:
Explanation:
As we know the , equation of time period for simple pendulum ,
T = 2*pi*
hence putting values we get ,
the solution is in picture ,
please
Brain-list it or support me at my U-Tube channel " ZK SOFT&GAMING " I will be thankful
Answer:
The maximum speed of sonic at the bottom of the hill is equal to 19.85m/s and the spring constant of the spring is equal to (497.4xmass of sonic) N/m
Energy approach has been used to sole the problem.
The points of interest for the analysis of the problem are point 1 the top of the hill and point 2 the bottom of the hill just before hitting the spring
The maximum velocity of sonic is independent of the his mass or the geometry. It is only depends on the vertical distance involved
Explanation:
The step by step solution to the problem can be found in the attachment below. The principle of energy conservation has been applied to solve the problem. This means that if energy disappears in one form it will appear in another.
As in this problem, the potential and kinetic energy at the top of the hill were converted to only kinetic energy at the bottom of the hill. This kinetic energy too got converted into elastic potential energy .
x = compression of the spring = 0.89
I am pretty sure the answer is C.
Answer:
If an object is moving with a constant velocity, then by definition it has zero acceleration. So there is no net force acting on the object. The total work done on the object is thus 0 (that's not to say that there isn't work done by individual forces on the object, but the sum is 0 ).
Explanation:
In the middle, when the object was changing position at a constant velocity, the acceleration was 0. This is because the object is no longer changing its velocity and is moving at a constant rate.