I believe the correct answer is A) From crest to crest.
~Silver
If no other forces act on the object, according to Newton’s first law, the spacecraft will continue moving at a constant velocity, assuming that a planet or something with large mass doesn’t cross its path. Forces are not required to continue the motion of an object on a frictionless plane at a constant rate.
<span>velocity is defined as the rate of change of displacement irrespective of the length of the path travelled while speed is the average rate of covering distance. but in the liming case where the instantaneous velocity is given as v=dx/dt where dx is the small displacement in a small interval dt, both the speed and velocity have the same magnitude and the direction of velocity is the direction of the tangent to the corresponding displacement-time curve.</span>
Answer: d. 8.25 m/s
Explanation:
We are given that Current= 5 m/s in j direction
Velocity= 8 m/s i + 3 m/s j
Now, we have to find Jada's speed with respect to the water.
First we find Jada's velocity with respect to water
v= (8 i + 3 j) - (5 j)
v= 8i - 2 j
To find the speed, we take the magnitude of this velocity vector we have
|v|=
|v|= = 8.246 m/s
which comes out to be around = 8.25 m/s
So option d is correct.
Answer:
The body is said to be in static equilibrium if the net force acting on a body at rest is zero.As the net force is zero,the body will not undergo motion.
Explanation: