highest energy level to the ground state.
Explanation:
The transition from the highest energy level to the ground state.
An electron has a discrete amount of energy accrued to it in any energy level it belongs to.
Electrons can transition between one energy level or the other.
- When electrons change state, they either release or absorb energy.
- When an atom absorbs energy, they move from their ground to final state which is consistent with the energy of the final state.
- When electrons release energy, they move from excited state to their ground state.
- Electrons will release the greatest amount of energy when they move from the highest energy level to the ground state.
Learn more:
Neil Bohr brainly.com/question/4986277
#learnwithBrainly
W = ∫ (x from 0.1 to +oo) F dx
= ∫ (x from 0.1 to +oo) A e^(-kx) dx
= A/k x [ - e^(-kx) ](between 0.1 and +oo)
= A/k x [ 0 + e^(-k * 0.1) ]
<span>
= A/k x e^(-k/10) </span>
Refraction is the change in direction of a wave, caused by the change in the wave's speed. Examples of waves include sound waves and light waves. Refraction is seen most often when a wave passes from one transparent medium to another transparent medium. Different types of medium include air and water. When a wave passes from one transparent medium to another transparent medium, the wave will change its speed and its direction. For example, when a light wave travels through air and then passes into water, the wave will slow and change direction.
Answer:
uh finish the question please lol.
Answer: As with all metals, the alkali metals are malleable, ductile, and are good conductors of heat and electricity. The alkali metals are softer than most other metals.
Alkaline earth metals
The alkaline earth elements are metallic elements found in the second group of the periodic table
Explanation: