Answer:
Explanation:
The HF is about five million times as strong as phenol, so it will be by far the major contributor of hydronium ions. We can ignore the contribution from the phenol.
1 .Calculate the hydronium ion concentration
We can use an ICE table to organize the calculations.
HF + H₂O ⇌ H₃O⁺ + F⁻
I/mol·L⁻¹: 2.7 0 0
C/mol·L⁻¹: -x +x +x
E/mol·L⁻¹: 2.7 - x x x
2. Calculate the pH
3. Calculate [C₆H₅O⁻]
C₆H₅OH + H₂O ⇌ C₆H₅O⁻ + H₃O⁺
2.7 x 0.0441
Answer:
6.24%
Explanation:
Molality by definition means a measurement of the number of moles of solute in solution with 1000 gm or 1Kg solvent. Notice the difference that Molarity is defined on the volume of solution and Molality on the mass of solvent.
So, An aqueous solution of iron(II) iodide has a concentration of 0.215 molal.
means 0.215 moles are present in 1 Kg of solvent.
The molar mass of Fe2I = 309.65 g / mole
mass of FeI2 = moles x molar mass
= 0.215 x 309.65
=66.57 gm
mass % of FeI2 = mass of FeI2 x 100 / total mass
= 66.57x 100 / (1000 +66.57)
= 6.24%
Answer:
44.91% of Oxygen in Iron (III) hydroxide
Explanation:
To solve this question we must find the molar mass of Fe(OH)3 and the molar mass of the oxygen in this molecule. Percent composition will be:
<em>Molar mass Oxygen / molar mass Fe(OH)3 * 100</em>
<em />
<em>Molar mass Fe(OH)3 and oxygen:</em>
1Fe = 55.845g/mol*1 = 55.845
3O = 16.00g/mol*3 = 48.00 - Molar mass of Oxygen
3H = 1.008g/mol*3 = 3.024
55.845 + 48.00 + 3.024 =
106.869g/mol is molar mass of Fe(OH)3
% Composition of oxygen is:
48.00g/mol / 106.869g/mol * 100 =
<h3>44.91% of Oxygen in Iron (III) hydroxide</h3>
Answer:
Baking soda = No. of atoms are 1 sodium + 1 Hydrogen + 1 carbon + 3 oxygens = 6 atoms per molecule.
The number of atoms in a molecule can be calculated by adding all of the number of elements from the chemical formula. For chlorophyll, the chemical formula would be <span>C55H72MgN4O5 adding all the elements we have 137 atoms. Hope this answers the question.</span>