<span>The formation of a derivative being a necessary step in the experiment lies in the importance of the derived structure. Often the derived product confers to reaction pathways which uses less reactive starting materials and more easily proceeds to completion. This also allows us to take a small amount of sample. The derived product at times is a general compound allowing its easy analysis. Often we encounter a product but we find it difficult to analyse it in ways we want. Here lies the essence of forming a derivative which often are simpler compounds allowing easier analysis yet having similar functional groups and structural properties. Also sometimes we encounter problems when our desired product is unstable and forms stable degraded products. But if we somehow manage to synthesize a derivative it may be relatively stable and form no degradation products. It would be stable at least for a significant period of time making it easier to study its properties. The derived product also at times are synthesized using general reaction pathways facilitating a way of easier synthesis and helping it to correlate with other similar reaction pathways and products.So the above paragraph accounts for the need of derivatives. When we encounter problems similar to those mentioned above it becomes necessary for a researcher to form rather synthesize a derivative.</span>
Answer:
mass ( g ) = 348 g
Explanation:
First you know : M = mole / volume (L)
in question you have the M and V and the formula of SUBSTANCE ( KF )
first you get the number of mole from equation above
so 3 = no of mole / 2
no of mole = 3 × 2 = 6 moles
and the moles equation is no of moles = mass ( g ) / molecular weight ( g/mole )
so you have already calculate the moles and you can know the MW from the Question
Mw of KF = 39 + 19 = 58
so n = mass / MW
so 6 = mass / 58
mass ( g ) = 348 g
GOOD LUCK
From the mole ratio of the reaction as given in the equation of the reaction, the mass of calcium chloride that can be produced from 5.59 mol of hydrochloric acid is 310.245 g.
<h3>What mass of calcium chloride can be produced from 5.59 mol of hydrochloric acid?</h3>
The mass of calcium chloride that can be produced from 5.59 mol of hydrochloric acid is determined from the equation of the reaction.
The equation of the reaction is given below:
Ca²⁺ (aq) + 2 HCl (aq) ---> CaCl₂ (s) + H₂ (g)
From the equation of the reaction, the mole ratio of HCL and calcium chloride is 2 : 1
Therefore, moles of calcium chloride that can be produced will be:
The moles of calcium chloride = 5.59 moles * 1/2
The moles of calcium chloride = 2.795 moles
The mass of calcium chloride produced = moles * molar mass
Molar mass of calcium chloride = 111 g/mol
Mass of calcium chloride produced = 2.795 * 111
Mass of calcium chloride produced = 310.245 g
Learn more about mole ratio at: brainly.com/question/19099163
#SPJ1
Answer:
Which ever item has more water inside of it
Explanation: