Answer:
30.63 m
Explanation:
From the question given above, the following data were obtained:
Total time (T) spent by the ball in air = 5 s
Maximum height (h) =.?
Next, we shall determine the time taken to reach the maximum height. This can be obtained as follow:
Total time (T) spent by the ball in air = 5 s
Time (t) taken to reach the maximum height =.?
T = 2t
5 = 2t
Divide both side by 2
t = 5/2
t = 2.5 s
Thus, the time (t) taken to reach the maximum height is 2.5 s
Finally, we shall determine the maximum height reached by the ball as follow:
Time (t) taken to reach the maximum height = 2.5 s
Acceleration due to gravity (g) = 9.8 m/s²
Maximum height (h) =.?
h = ½gt²
h = ½ × 9.8 × 2.5²
h = 4.9 × 6.25
h = 30.625 ≈ 30.63 m
Therefore, the maximum height reached by the cannon ball is 30.63 m
Answer:
Explanation: find the attached solution below
The mass of an object has no effect whatsoever on the object's
acceleration during free-fall. If there is no air resistance to interfere
with the natural effects of gravity, then a feather and a battleship ...
dropped at the same time ... fall together, and hit the ground at the
same time.
Answer:
9.51
Explanation:
The distance s is given by:
The change in distance is given by the time derivative of s:
For the time t you solve the equation of distance x for time:
Plugging in for t:
Answer:
F=94.32*10⁻⁹N , The force F is repusilve because both charges have the same sign (+)
Explanation:
Two point charges (q₁, q₂) separated by a distance (d) exert a mutual force (F) whose magnitude is determined by the following formula:
F=K*q₁*q₂/d² Formula (1)
F: Electric force in Newtons (N)
K : Coulomb constant in N*m²/C²
q₁,q₂:Charges in Coulombs (C)
d: distance between the charges in meters(m)
Equivalence
1nC= 10⁻⁹C
Data
K=8.99x10⁹N*m²/C²
q₁ = 7.94-nC= 7.94*10⁻⁹C
q₂= 4.14-nC= 4.14 *10⁻⁹C
d= 1.77 m
Magnitude of the electrostatic force that one charge exerts on the other
We apply formula (1):
F=94.32*10⁻⁹N , The force F is repusilve because both charges have the same sign (+)