3. The sum of the players' momenta is equal to the momentum of the players when they're stuck together:
(75 kg) (6 m/s) + (80 kg) (-4 m/s) = (75 kg + 80 kg) v
where v is the velocity of the combined players. Solve for v :
450 kg•m/s - 320 kg•m/s = (155 kg) v
v = (130 kg•m/s) / (155 kg)
v ≈ 0.84 m/s
4. The total momentum of the bowling balls prior to collision is conserved and is the same after their collision, so that
(6 kg) (5.1 m/s) + (4 kg) (-1.3 m/s) = (6 kg) (1.5 m/s) + (4 kg) v
where v is the new velocity of the 4-kg ball. Solve for v :
30.6 kg•m/s - 5.2 kg•m/s = 9 kg•m/s + (4 kg) v
v = (16.4 kg•m/s) / (4 kg)
v = 4.1 m/s
Answer:
The new height the ball will reach = (1/4) of the initial height it reached.
Explanation:
The energy stored in any spring material is given as (1/2)kx²
This energy is converted to potential energy, mgH, of the ball at its maximum height.
If the initial height reached is H
And the initial compression of the spring = x
So, mgH = (1/2)kx²
H = kx²/2mg
The new compression, x₁ = x/2
New energy of loaded spring = (1/2)kx₁²
And the new potential energy = mgH₁
mgH₁ = (1/2)kx₁²
But x₁ = x/2
mgH₁ = (1/2)k(x/2)² = kx²/8
H₁ = kx²/8mg = H/4 (provided all the other parameters stay constant)
Answer:
<h3>
The charge transferred from the cloud to earth is 1 Coulomb.</h3>
Explanation:
Given :
Current A
Time sec
We know that the current is the rate of flow of charge.
From the formula of current,
<h3>
</h3>
Where charge transfer between cloud and earth.
C
Hence, the charge transferred from the cloud to earth is 1 Coulomb.
Answer:
Explanation:
A Spring stretches / compresses when force is applied on them and they are governed by the Hookes Law which states that the force required to stretch or compress a spring is directly proportional to the distance it is stretched.
F is the force applied and x is the elongation of the spring
k is the spring constant.
negative sign indicates the change in direction from equilibrium position.
In the given question, we dont have force but we know that the pan is hanging. We also know from the Newton's second law of motion that
Inserting this into Hooke's Law
computing it for x,
This is the model which will tell the length of the spring against change in the mass located in the pan.