Answer:
The work done on the Frisbee is 1.36 J.
Explanation:
Given that,
Mass of Frisbee, m = 115 g = 0.115 kg
Initial speed of Frisbee, u = 12 m/s at a point 1 m above the ground
Final speed of Frisbee , v = 10.9674 m/s when it has reached a height of 2.00 m. Let W is the work done on the Frisbee by its weight. According to work energy theorem, the work done is equal to the change in its kinetic energy. So,
So, the work done on the Frisbee is 1.36 J. Hence, this is the required solution.
DEFINITION:::::;;The type of reactions in which energy is releases to the environment are called Exothermic reactions.
EXAMPLE::: formation of carbon dioxide and urea formation are actually the examples of exothermic reaction..
Hope it helps
Answer:
When focused light is projected onto the retina, it stimulates the rods and cones. The retina then sends nerve signals are sent through the back of the eye to the optic nerve. The optic nerve carries these signals to the brain, which interprets them as visual images.
Explanation:
Hope it will help u
Answer:
∴ fractional compression = 1.34 × 10⁻²
Explanation:
given,
depth of Indian ocean = 3000 m
Bulk modulus of the water = 2.2 x 10⁹ N/m²
We know,
P = P₀ + ρgh
P₀ is the atmospheric pressure
P₀ = 10⁵ N/m²
ρ is the density of the water, 1000 Kg/m³
P = 10⁵ + 1000 × 9.8 × 3000 = 2.94 × 10⁷ N/m²
using formula,
B = P/{-∆V/V}
B is bulk modulus and { -∆V/V} is the fractional compression
∴ fractional compression = 1.34 × 10⁻²
Mass is <span>is a dimensionless quantity representing the amount of matter in a particle or object. The more mass something has, the more energy is used to lift it.</span>