The answer is volume because The base units of length and volume are linked in the metric system. By definition, a liter is equal to the volume of a cube exactly 10 cm tall, 10 cm long, and 10 cm wide. Because the volume of this cube is 1000 cubic centimeters and a liter contains 1000 milliliters, 1 milliliter is equivalent to 1 cubic centimeter.
Hope this helps :)
Answer:
The equilibrium constant for the reversible reaction = 0.0164
Explanation:
At equilibrium the rate of forward reaction is equal to the rate of backwards reaction.
The reaction is given as
A ⇌ B
Rate of forward reaction is first order in [A] and the rate of backward reaction is also first order in [B]
The rate of forward reaction = |r₁| = k₁ [A]
The rate of backward reaction = |r₂| = k₂ [B]
(Taking only the magnitudes)
where k₁ and k₂ are the forward and backward rate constants respectively.
k₁ = 0.010 s⁻¹
k₂ = 0.0610 s⁻¹
|r₁| = 0.010 [A]
|r₂| = 0.016 [B]
At equilibrium, the rate of forward and backward reactions are equal
|r₁| = |r₂|
k₁ [A] = k₂ [B] (eqn 1)
Note that equilibrium constant, K, is given as
K = [B]/[A]
So, from eqn 1
k₁ [A] = k₂ [B]
[B]/[A] = (k₁/k₂) = (0.01/0.0610) = 0.0163934426 = 0.0164
K = [B]/[A] = (k₁/k₂) = 0.0164
Hope this Helps!!!
Answer:
C. The half-life of C-14 is about 40,000 years.
Explanation:
The only false statement from the options is that the half-life of C-14 is 40,000yrs.
The half-life of an isotope is the time it takes for half of a radioactive material to decay to half of its original amount. C-14 has an half-life of 5730yrs. This implies that during every 5730yrs, C-14 will reduce to half of its initial amount.
- All living organisms contain both stable C-12 and the unstable isotope of C-14
- The lower the C-14 compared to the C-12 ratio in an organism, the older it is.
Answer:
enantiomers
Explanation:
L and D stand for levorotatory and dextrorotatory respectively. A levorotatory molecule will rotate the plane of plane polarised light left and a dextrorotatory molecule will rotate the plane of plane polarised light right. L and D molecules are non superimposable mirror image of each other. Therefore they are also known as enantiomers.