Answer:
Explanation:
Ksp(BaSO4)=1.07×10−10
BaSO₄ → Ba²⁺ + SO₄²⁻
1.07×10⁻¹⁰ = ( Ba²⁺) × ( SO₄²⁻)
but Ba²⁺ = 1.3×10⁻² M
1.07×10⁻¹⁰ = 1.3×10⁻² M × ( SO₄²⁻)
( SO₄²⁻) = 1.07×10⁻¹⁰ / 1.3×10⁻² = 0.823 × 10⁻⁸ M
while Ksp(CaSO4)=7.10×10−5
CaSO₄ → Ca²⁺ + SO₄²⁻
7.10×10⁻⁵ = 2.0×10⁻² × ( SO₄²⁻)
( SO₄²⁻) = 7.10×10⁻⁵ / 2.0×10⁻² = 3.55 × 10⁻³ M
comparing the concentration of sulfate ions, Ba²⁺ cation will precipitate first because the Ba²⁺ requires 0.823 × 10⁻⁸ M sodium sulfate which less compared the about needed by CaSO₄
Answer: <em>Acceleration of the ball in the given system is 5 meter per Second Square</em>
<em>The laws of motion are used to determine various aspects of an object in motion</em>.
Explanation:
Applying the first law of motion to calculate acceleration; if formula used in first law is given as
Here we have a final velocity as 40 meter per second and initial velocity as 20 meter per second and time span is given as 2 second applying the given values in the given equation and finding the value of a
Answer:
a solution color becoming less intense due to dilution- is not an evidence of a chemical reaction
bubbles (gas formation) - evidence of a chemical reaction
explosion or fire - evidence of a chemical reaction
changes in color- evidence of a chemical reaction
precipitation- evidence of a chemical reaction
changes in temperature - evidence of a chemical reaction
a solid liquifying - is not an evidence of a chemical reaction
solution colors mixing - is not an evidence of a chemical reaction
Explanation:
A chemical change is not easily reversible and yields new substances. It is often accompanied by a loss or gain of heat.
In the answer section, i have shown some evidences that lead us to conclude that a chemical reaction has taken place. The occurrence of a chemical change often goes with the formation of new substances as earlier stated and any of these signs may accompany the process.
For instance, when a metal is dropped in dilute acid solution, bubble of hydrogen gas indicates that a chemical reaction has taken place.
The strength of an Arrhenius base determines percentage of ionization of base and the number of OH⁻ ions formed.
Strong base completely ionize in water and gives a lot of hydroxide ions (OH⁻), for example sodium
hydroxide: NaOH(aq) → Na⁺(aq)
+ OH⁻(aq).
Weak base partially ionize in water and gives a few hydroxide ions (OH⁻), for example ammonia: NH₃ + H₂O(l) ⇄ NH₄⁺(aq) + OH⁻(aq).