Answer: gonna lin k answer key
Answer:
O2+ e-→O2-εo’= -0.040 V+ 0.046 V= -0.925 Vb. Q = 1/0.02 = 50,the number of electrons transferred νe= 1, ε’=εo’-(0.0591V/νe)*logQ = -0.971V –0.0591V*log50 = -1.071 V
Explanation:
Answer:
The final temperature of sulfur dioxide gas is 215.43 C
Explanation:
Gay Lussac's Law establishes the relationship between the temperature and the pressure of a gas when the volume is constant. This law says that if the temperature increases the pressure increases, while if the temperature decreases the pressure decreases. In other words, the pressure and temperature are directly proportional quantities.
Mathematically, the Gay-Lussac law states that, when a gas undergoes a transformation at constant volume, the quotient of the pressure exerted by the temperature of the gas remains constant:
Assuming you have a gas that is at a pressure P1 and at a temperature T1 at the beginning of the experiment, by varying the temperature to a new value T2, then the pressure will change to P2, and it will be true:
The reference temperature is the absolute temperature (in degrees Kelvin)
In this case:
- P1= 0.450 atm
- T1= 20 C= 293.15 K (being 0 C= 273.15 K)
- P2=0.750 atm
- T2= ?
Replacing:
Solving:
T2=488.58 K
Being 273.15 K= 0 C, then 488.58 K= 215.43 C
<u><em>The final temperature of sulfur dioxide gas is 215.43 C</em></u>
Because it requires more energy to create a neutron from a proton than it does to create a proton from a neutron, protons were formed more frequently than neutrons in the early universe. The correct answer is option b.
To find the answer, we need to know more about the early universe.
<h3>How the formation of proton over neutrons was favored in the early universe?</h3>
- A neutron is produced with greater energy than a proton.
- However, later on, some of the protons were changed into neutrons.
- Contrary to some claims, the proton is a stable particle that never decays, but the neutron is unstable outside of the nucleus and decays with a half life of around 10.5 minutes.
- However, very few would have had time to decay on the timeline you mention in your question.
- Every matter particle should have been accompanied by an antimatter particle, and every proton, neutron, and electron, by an anti-neutron and a positron, respectively.
- Where did all the antimatter go is the great mystery. There have been a few attempts to explain this, but they have failed.
Thus, we can conclude that, the correct answer is option b.
Learn more about the early universe here:
brainly.com/question/28130096
#SPJ1
Answer:
c. 15 g Kr
Explanation:
The amount of a gas (Moles) is directely proportional to its pressure. That means the higher amount of moles, the highest pressure and vice versa.
Using molar mass of the compounds (Ne=20.2g/mol, Ar = 39.9g/mol, Kr = 83.8g/mol, CO₂ = 44 g/mol and F₂ = 38.0g/mol), moles of 15.0g of each gas are:
Ne = 15g ₓ (1mol / 20.2g) = <em>0.74 moles of Ne</em>
Ar = 15g ₓ (1mol / 39.9g) = <em>0.38 moles of Ar</em>
Kr = 15g ₓ (1mol / 83.8g) = <em>0.18 moles of Kr</em>
CO₂ = 15g ₓ (1mol / 44g) = <em>0.34 moles of CO₂</em>
F₂ = 15g ₓ (1mol / 38g) = <em>0.39 moles of F₂</em>
<h3>As 15g of Kr contains the less quantity of moles, this sample will con have the lowest pressure</h3>