A covalent bond is formed between H and Br
The structure of HBr is as follows
H —Br
Formal charge for atoms are the charges for individual atoms in compounds.
Formal charge can be calculated as follows ;
Formal charge of atom = number of valence electrons -( number of bonds + number of lone pair electrons)
H has 1 valence electron, 1 bond and 0 number of lone pair electrons
Formal charge of H = 1 -1 -0 = 0
H has 0 charge
Answer:
Explanation:
Given:
V1 = 200 ml
T1 = 20 °C
= 20 + 273
= 293 K
P1 = 3 atm
P2 = 2 atm
V2 = 400 ml
Using ideal gas equation,
P1 × V1/T1 = P2 × V2/T2
T2 = (2 × 400 × 293)/200 × 3
= 234400/600
= 390.67 K
= 390.67 - 273
= 117.67 °C
It’s 6.022x10^23. This is how many atoms of any element are in one mole of that element. No matter what it is, there are always 6.022x10^23 atoms per mole. So divide 1.81x10^24 by 6.022x10^23 to get approximately 3 moles of sulfur.
Answer is: a) I only.
Above critical temperature of CO₂, a gas cannot be liquefied no matter how much pressure is applied. Temperature and pressure above its critical point is called supercritical fluid and this is <span>intermediate between gaseous and liquid states.</span>