Answer:
A decrease in [H3O+] and an increase in pH (option a)
Explanation:
Equilibrium of water is shown in this equation
2H₂O ⇄ H₃O⁺ + OH⁻
When you add NaOH, you are modifying [OH⁻]
NaOH → Na⁺ + OH⁻
In equilibrium of water, the [OH⁻] increases
2H₂O ⇄ ↓ H₃O⁺ + OH⁻ ↑
As the [OH⁻] increases, by Le Chatellier, the equilibrium tends to decrease [H₃O⁺].
If the [OH⁻] is higher, pH is also high so the solution of water and sodium hydroxide would be totally basic.
In chemical reactions, the actual yield is not the same as the expected yield . Actual yield is lower than the theoretical yield . Then we have to find the yield percentage. To see what percentage of the theoretical yield is the actual yield.
Percent yield = actual yield / theoretical yield x 100%
Percent yield = 24.6/55.9 x100%
Percent yield = 44%
Answer:
1,4-hexanediamine contains two functional groups.
Explanation:
1,4-hexanediamine is an organic molecule which contains two functional groups at C-1 and C-4 position.
The longest carbon chain in 1,4-hexanediamine contains six carbon atoms.
Molecular formula of 1,4-hexanediamine is .
1,4-hexanediamine used as a bidentate ligand in organometallic chemistry.
The structure of 1,4-hexanediamine is shown below.
Answer:
the acceleration i think is 10
Explanation:
5x10=50
In a bronsted lowry proton transfer reaction, the
hydroxide functions as a/an <u>proton acceptor.</u>
Bases are the opposite of acids. Bases are basic since they
take or accept protons. For example, a Hydroxide ion can accept a proton to
form water.