Answer:
1.89 g CaCO₃
Explanation:
You will have to use stoichiometry for this question. First, look at the chemical equation.
Na₂CO₃ + CaCl₂ ==> 2 NaCl + CaCO₃
From the above equation, you can see that for one mole of Na₂CO₃, you will produce one mole of CaCO₃. This means that however many moles of Na₂CO₃ you have in the beginning, you will have the same amount of moles of CaCO₃, theoretically speaking.
So, convert grams to moles. You should get 0.0189 mol Na₂CO₃. This means that you will get 0.0189 mol CaCO₃. I'm not sure what units you want the answer in, but I'm going to give it in grams. Convert moles to grams. Your answer should be 1.89 g.
The correct answer is letter (A) Acetylene. Acetylene is the most simplest form of alkyne and at the same time a hydrocarbon. It is unsaturated because of the presence of only two carbon atoms that are bonded together in a triple bond. I<span>n its pure, it is unstable and thus, it is usually held and handled as a solution.</span>
Answer:
The heat released by the combustion is 20,47 kJ
Explanation:
Bomb calorimeter is an instrument used to measure the heat of a reaction. The formula is:
Q = C×m×ΔT + Cc×ΔT
Where:
Q is the heat released
C is specific heat of water (4,186kJ/kg°C)
m is mass of water (1,00kg)
ΔT is temperature change (23,65°C - 20,45°C)
And Cc is heat capacity of the calorimeter (2,21kJ/°C)
Replacing these values the heat released by the combustion is:
<em>Q = 20,47 kJ</em>