Answer:
Density, mass of a unit volume of a material substance. The formula for density is d = M/V, where d is density, M is mass, and V is volume. Density is commonly expressed in units of grams per cubic centimetre. ... For example, the density of air is 1.2 kilograms per cubic metre.
Answer:
239.7 g
Explanation:
Step 1: Write the balanced equation
2 LiBr + I₂ → 2 LiI + Br₂
Step 2: Convert the molecules of iodine to moles
We have 9.033 × 10²³ particles (molecules) of iodine. In order to convert molecules to moles, we will use the <em>Avogadro's number</em>: there are 6.022 × 10²³ molecules of iodine in 1 mole of iodine.
Step 3: Calculate the moles of bromine produced
The <em>molar ratio of I₂ to Br₂</em> is 1:1. Then, the moles of bromine produced are 1.500 moles.
Step 4: Calculate the mass of bromine
The <em>molar mass of bromine</em> is 159.81 g/mol. The mass corresponding to 1.500 moles is:
Cations and anions are both ions. The difference between a cation and an anion is the net electrical charge of the ion. Ions are atoms or molecules which have gained or lost one or more valencee electron giving the ion a net positive or negative charge. Cations are ions with a net positive charge.
please mark as brainliest <3
Answer:
1.55 × 10²⁴ atoms Xe
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
- STP (Standard Conditions for Temperature and Pressure) = 22.4 L per mole at 1 atm, 273 K
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
[Given] 57.5 L Xe at STP
[Solve] atoms Xe
<u>Step 2: Identify Conversions</u>
[STP] 22.4 L = 1 mol
Avogadro's Number
<u>Step 3: Convert</u>
- [DA] Set up:
- [DA] Divide/Multiply [Cancel out units]:
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
1.54583 × 10²⁴ atoms Xe ≈ 1.55 × 10²⁴ atoms Xe
Answer:
The correct answer is cation. See the explanation below, please.
Explanation:
An atom with a net charge, either positive or negative, is called an ion. In the event that an atom loses an electron (or more), that is, it will have more protons than electrons, and its net charge will be positive, it will be called cation. In the opposite direction, if an atom gains electrons, it will have a negative net charge, called anion.