Answer:
P = 164 Atm
Explanation:
PV = nRT => P = nRT/V
n = 10.0 moles
R = 0.08206 L·Atm/mol·K
T = 27.0°C = 300 K
V = 1.50 Liters
P = (10.0 mol)(0.08206 L·Atm/mol·K )(300 K)/(1.50 Liters) = 164.12 Atm ≅ 164 Atm (3 sig. figs.)
Answer:
Mg
Explanation:
The standard reduction potentials are
<u>E°/V
</u>
Au³⁺(aq ) + 3e⁻ ⟶ Au(s); 1.42
Hg²⁺(aq) + 2e⁻ ⟶ Hg(l); 0.85
Ag⁺(aq) + e⁻ ⟶ Ag(s); 0.80
Cu²⁺(aq) + 2e⁻ ⟶ Cu(s); 0.34
Mg2+(aq) + 2e- ⟶ Mg(s); -2.38
The more negative the standard reduction potential, the stronger the metal is as a reducing agent.
Mg is the only metal with a standard reduction potential lower than that of Cu, so
Only Mg will react spontaneously with Cu²⁺.
I am pretty sure your answer are correct , from what I know. Good job!
Answer:
The answer is 2.660 mol/l
Explanation:
Given: n= 0.0665, v= 25.00ml
Required: C
C (molarity)= n (of solute)/ v (of solvent) [ standard unit: mol/l]
First convert volume of solvent in its standard unit, i.e. litres(L)
v= 25.00ml/1000= 0.02500L
C = 0.0665 mol / 0.02500 L= 2.660 mL (In proper significant digits i.e. 4 sigdigs)
Therefore, The molarity of the sulfuric acid is 2.660 mol/L :)