As we move down the group, the metallic bond becomes more stable and the formation of forming covalent bond decreases down the group due to the large size of elements.
Covalent and metallic bonding leads to higher melting points. Due to a decrease in attractive forces from carbon to lead there is a drop in melting point.
Carbon forms large covalent molecules than silicon and hence has a higher melting point than silicon.
Similarly, Ge also forms a large number of covalent bonds and has a smaller size as compared to that of Sn. Hence melting point decreases from Ge to Sn.
The order will be C>Si>Ge>Pb>Sn.
To learn more about the covalent bond, visit: brainly.com/question/10777799
#SPJ4
<u>We are given:</u>
The force applied on the poor hamster (F) = 12 N
Acceleration of the poor Hamster (a) = 8 m/s²
<u>Solving for the mass of the Poor Hamster:</u>
From newton's second equation of motion, we know that:
F = ma
<em>replacing the given values</em>
12 = 8 * m
m = 12/8 kg
m = 3/2 kg
The poor Hamster weighs 3/2 kg
Answer:
The answer is B. Compressions and rarefactions.
Explanation:
- <u><em>Longitudinal sound waves are waves of alternating pressure deviations from the equilibrium pressure, causing local regions of compression and rarefaction.</em></u>
Answer:
Solids, liquids, and gases are made of tiny particles called atoms and molecules. In a solid, the particles are very attracted to each other. They are close together and vibrate in position but don't move past one another. In a liquid, the particles are attracted to each other but not as much as they are in a solid.
Answer:
The answer to your question is 2 molecules
Explanation:
Unbalanced chemical reaction
H₂(g) + N₂(g) ⇒ NH₃ (g)
Reactants Elements Products
2 H 3
2 N 1
Balanced chemical reaction
3H₂(g) + N₂(g) ⇒ 2NH₃ (g)
Reactants Elements Products
6 H 6
2 N 2
From the balanced chemical reaction we conclude that when 3 molecules of hydrogen react with one molecule of nitrogen, 2 molecules of ammonia will be formed.