Answer:
a. 63.2%
b. 11.7%
c. 73.3%
d. 0.995%
e. 55.5%
Explanation:
An ionic compound is a compound that is formed by ions, so one of the elements must donate electrons (which is the cation, the positive ion), and the other will receive these electrons (which is the anion, the negative ion).
The power of an element has to attract the electrons is called electronegativity, and so, as higher is the difference of electronegative of the elements, it is more probable that one of them will "still" the electrons and will form an ionic compound. The percent of this ionic character can be found by the Pauling's equation:
*100%
Where is the electronegativity difference of the elements. Thus, consulting an electronegativity table:
a. = 1.5
= 3.5
*100%
%IC = 63.2%
b. = 1.6
= 2.1
*100%
%IC = 11.7%
c. = 0.7
= 3.0
*100%
%IC = 73.3%
d. = 1.7
= 1.9
*100%
%IC = 0.995 %
e. = 1.2
= 3.0
*100%
%IC = 55.5%
Answer: I am confident the answer is B
Explanation:
forgive me if im wrong
Answer:
The answer to your question is 24.325
Explanation:
Data
Magnesium-24 Abundance = 78.70%
Magnesium-25 Abundance = 10.13%
Magnesium-26 Abundance = 11.17%
Process
1.- Convert the abundance to decimals
Magnesium-24 Abundance = 78.70/100 = 0.787
Magnesium-25 Abundance = 10.13/100 = 0.1013
Magnesium-26 Abundance = 11.17/100 = 0.1117
2.- Write an equation
Average atomic mass = (Atomic mass-1 x Abundance 1) + (Atomic mass 2 x
Abundance-2) + (Atomic mass 3 x Abundance 3)
3.- Substitution
Average atomic mass = (24 x 0.787) + (25 x 0.1013) + (26 x 0.1117)
4.- Simplification
Average atomic mass = 18.888 + 2.533 + 2.904
5.- Result
Average atomic mass = 24.325
Decreasing temperature and increasing pressure
C. Because you eliminate "spectator ions" or ions that are repeated and you can only do that to aqueous. So, Ca +2 and 2I -1 are the only ones you can remove for net ionic.