Answer:
In He2 molecule,
Atomic orbitals available for making Molecular Orbitals are 1s from each Helium. And total number of electrons available are 4.
Molecular Orbitals thus formed are:€1s2€*1s2
It means 2 electrons are in bonding molecular orbitals and 2 are in antibonding molecular orbitals .
Bond Order =Electrons in bonding molecular orbitals - electrons in antibonding molecular orbitals /2
Bond Order =Nb-Na/2
Bond Order =2-2/2=0
Since the bond order is zero so that He2 molecule does not exist.
Explanation:
The flashlight's beam will all be refracted towards a central axis. But, this is still dependent on the type of lens that is used for the said activity. The speed of light will vary depending whether the lens is a concave or a convex lens. The exit point of the light will always head towards the central axis.
Answer:
The Aufbau Principle simply helps us determine electron configuration of an atom by stating that in the ground state of an atom or ion, electrons fill subshells of the lowest available energy level, then they fill subshells of higher energy level. For example, the 1s subshell is filled before the 2s subshell is occupied. Now, when trying to figure out the electron configuration of a calcium, you need to know its atomic number to determine its amount of total electrons. Calcium has an atomic number of 20, which means it has 20 protons and 20 electrons. First remember that the "s" subshell only holds 2 electrons, the "p" subshell only hold 6 electrons, and the "d" subshell only holds up to 10 electrons. Using the Aufbau principle below, we can determine that the first two electrons will go in the 1s orbital. Since 1s can only hold two electrons the next 2 electrons go in the 2s orbital. The next six electrons will go in the 2p orbital. The p orbital can hold up to six electrons. We'll put six in the 2p orbital and then put the next two electrons in the 3s. Since the 3s is now full we'll move to the 3p where we'll place the next six electrons. We now go to the 4s orbital where we place the remaining two electrons. With this, the calcium electron configuration will be:
Hope that helps you understand!
Answer:
lighter atoms especially hydrogen
Explanation:
At the heart of the stars, nuclear fusion merges lighter atoms especially hydrogen together in the nucleus of atoms to create new elements.
During nuclear fusion small atomic nuclei combines to form larger ones with the release of a large amount of energy.
The energy released provides the needed temperature for another set of hydrogen atoms to fuse. This process is in turn yields another set of helium atom which releases a lot of energy.
A chain reaction progresses which leads to the formation of new elements.
As we know methane is an Alkane to separate an Alkane We use fractional distillation to put each liquid into its fraction with the right temperature group