The answer is 0.59 M.
Molar mass (Mr) of MgCl₂ is the sum of the molar masses of its elements.
So, from the periodic table:
Mr(Mg) = 24.3 g/l
Mr(Cl) = 35.45 g/l
Mr(MgCl₂) = Mr(Mg) + 2Mr(Cl) = 24.3 + 2 · 35.45 = 24.3 + 70.9 = 95.2 g/l
So, 1 mol has 95.2 g/l.
Our solution contains 55.8g in 1 l of solution, which is 55.8 g/l
Now, we need to make a proportion:
1 mole has 95.2 g/l, how much moles will have 55.8 g/l:
1 M : 95.2 g/l = x : 55.8 g/l
x = 1 M · 55.8 g/l ÷ 95.2 g/l ≈ 0.59 M
I don't know anything sorry for inconvenience but I will be used to make a system running with artificial intelligence
Answer:
2x + 3y = 18 sum of charges of the iron ions must be +18 to balance 18 CN- ... y = 4 so there are 4 Fe3+ ions and (7–4) = 3
First, we have to calculate the number of moles of H2SO4 in the solution:
V=60 mL = 0.06 L
c=5.85 mol/L
n=V×c=0.06×5.85=0.351 mol
Then we need to find the molar mass of H2SO4:
2×Ar(H) + Ar(S) + 4×Ar(O) =
=2 + 32 + 64 = 98 g/mol
Finally, we need to find the mass of H2SO4:
m=0.351 × 98 = 34.398 g