Answer:
Explanation:
Hello!
In this case, according to the reaction:
We can see there is a 4:2 mole ratio between chromium and chromium (III) oxide, this, for the given 56.2 g of chromium, the theoretical yield of the oxide product is computed down below:
Now, considering the 76.0-% yield for this reaction, the actual yield turns out:
Best regards!
Answer:
My personal favorite is dragon ball super.
Explanation:
Answer: Its option "A" Both A and R are true and R is the correct explanation of A.
Hope it helps
Answer:
(a) rate = 4.82 x 10⁻³s⁻¹ [N2O5]
(b) rate = 1.16 x 10⁻⁴ M/s
(c) rate = 2.32 x 10⁻⁴ M/s
(d) rate = 5.80 x 10⁻⁵ M/s
Explanation:
We are told the rate law is first order in N₂O₅, and its rate constant is 4.82 x 10⁻³s⁻¹ . This means the rate is proportional to the molar concentration of N₂O₅, so
(a) rate = k [N2O5] = 4.82 x 10⁻³s⁻¹ x [N2O5]
(b) rate = 4.82×10⁻³s⁻¹ x 0.0240 M = 1.16 x 10⁻⁴ M/s
(c) Since the reaction is first order if the concentration of N₂O₅ is double the rate will double too: 2 x 1.16 x 10⁻⁴ M/s = 2.32 x 10⁻⁴ M/s
(d) Again since the reaction is halved to 0.0120 M, the rate will be halved to
1.16 x 10⁻⁴ M/s / 2 = 5.80 x 10⁻⁵ M/s
<span>A cation is an atom that loses a valence electron. When a valence electron is released there is one electron less to create a repulsive force. The loss of a repulsive force will allow the atom to pull tighter together. An anion would therefore be larger in size due to increased repulsion of the valence electrons.</span>