Answer:
p(a) * p(b) = .01923
p(b) = .01923 / .07692 = .2500
Desired operation: A + B = C; {A,B,C) are vector quantities.
<span>Issue: {A,B} contain error (measurement or otherwise) </span>
<span>Objective: estimate the error in the vector sum. </span>
<span>Let A = u + du; where u is the nominal value of A and du is the error in A </span>
<span>Let B = v + dv; where v is the nominal value of B and dv is the error in B </span>
<span>Let C = w + dw; where w is the nominal value of C and dw is the error in C [the objective] </span>
<span>C = A + B </span>
<span>w + dw = (u + du) + (v + dv) </span>
<span>w + dw = (u + v) + (du + dv) </span>
<span>w = u+v; dw = du + dv </span>
<span>The error associated with w is the vector sum of the errors associated with the measured quantities (u,v)</span>
Answer:
3.43 m/s^2
Explanation:
Force is equal to mass times acceleration. (F=ma). You can use inverse operations to get the formula for acceleration, which is acceleration is equal to force divided by mass. (a=F/m). Since there are two forces here, the force friction (55 N), and the force applied (175 N), we must solve for the net force. To solve for the net force, you take the applied force (175 N) and subtract the frictional force from it (55 N). Thus, the net force is 120 N. With this done, we can now solve for our acceleration.
Using the equation for acceleration, we take the force and divide it by mass.
120/35
Answer: 3.43* m/s^2**
*Note: This is rounded to the nearest hundredth, the full answer is: 3.42857143
**Note: In case you're confused, this is meters per second squared.
So power is considered as the rate of doing work. Base on the problem given, my analysis is that the machine who finish the work faster is machine C. Therefore, in order to finish the same amount of work in a short period of time you are going to expend the most power. My answer is Machine C.
The formula for speed is:
Speed = Distance/Time
We can plug in the given values into the above equation:
Speed = 570m÷24s
Speed = 23.75, which rounds to 24m/s as a whole number. Therefore, the answer is b.