Answer:
The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.
Explanation:
Given that,
Amplitude = 0.08190 m
Frequency = 2.29 Hz
Wavelength = 1.87 m
(a). We need to calculate the shortest transverse distance between a maximum and a minimum of the wave
Using formula of distance
Where, d = distance
A = amplitude
Put the value into the formula
Hence, The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.
When an astronaut travels from the earth to the moon, her weight changes, but her mass remains constant. <em>(C ).</em>
Answer:
658.16N
Explanation:
Step one:
given data
mass m= 235kg
Force F= 760N
angle= 30 degrees
Required
The horizontal component of the force
Step two:
The horizontal component of the force
Fh= 760cos∅
Fh=760cos30
Fh=760*0.8660
Fh=658.16N
It's either A or B because it starts off as nuclear energy.