Answer:
Summary
In a hands-on way, students explore light's properties of absorption, reflection, transmission and refraction through various experimental stations within the classroom. To understand absorption, reflection and transmission, they shine flashlights on a number of provided objects. To understand refraction, students create indoor rainbows. An understanding of the fundamental properties of light is essential to designing an invisible laser security system, the ongoing objective in this unit.
This engineering curriculum aligns to Next Generation Science Standards (NGSS).
Enhanced photo shows a very bright rainbow against a dark gray sky.
Students explore light
copyright
Engineering Connection
In designing laser-based security systems, engineers consider the implications of the penetrating properties of electromagnetic radiation. The concepts of wave absorption and transmission are fundamental in the design of laser based security systems, and have additional applications in biomedical engineering. In x-ray imaging, various tissue types result in a range of transmittances that can be recorded to depict bones on x-ray film. Engineers must also be aware of safety concerns; even low doses of high-energy radiation can be dangerous, especially in the case of gamma radiation. For cancer radiation treatments, control of high-energy radiation can be beneficial, but must be carefully managed. Students consider the potential real-world uses of various types of radiation in questions 2 and 5-9 of the post-activity assessment handout.
Learning Objectives
After this activity, students should be able to:
Explain the properties of light as related to security systems.
Describe which objects reflect, absorb or transmit light.
Explain light refraction as applied to rainbows that appear in nature.
Identify a number of applications of radiation to science and technology today.
This activity also meets the following Tennessee Foundations of Technology educational technology content standards: 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 and 8.0.
This activity also meets the following National Science Education Standards (NSES) teaching standards: A, B, C, D, E, F; see
Explanation:
correct me if I'm wrong:)