Answer:
a) , b)
Explanation:
a) Let consider two equations of equilibrium, the first parallel to ski slope and the second perpendicular to that. The equations are, respectively:
The force on the skier is:
b) The equations of equilibrium are the following:
The force on the skier is:
Refer to the diagram shown below.
W₁ = (4 kg)*(9.8 m/s²) = 39.2 N
W₂ = (1 kg)*(9.8 m/s²) = 9.8 N
The normal reaction on the 4-kg mass is
N = (39.2 N)*cos(25°) = 35.5273 N
The force acting down the inclined plane due to the weight is
F = (39.2 N)*sin(25°) = 16.5666 N
The net force that accelerates the 4-kg mass at a m/²s down the plane is
F - W₂ = (4 kg)*(a m/s²)
4a = 16.5666 - 9.8
a = 1.6917 m/s²
Answer: 1.69 m/s² (nearest hundredth)
Answer:
Temperature of the gas molecules is 7.96 x 10⁴ K
Explanation:
Given :
Ions accelerated through voltage, V = 10.3 volts
The work done to change the position of singly charged gas ions is given by the relation :
W = q x V
Here q is charge of the ions and its value is 1.6 x 10⁻¹⁹ C.
Average kinetic energy of gas molecules is given by the relation:
K.E. =
Here T is temperature and k is Boltzmann constant and its value is 1.38 x 10⁻²³ J/K.
According to the problem, the average kinetic energy of gas is equal to the work done to move the singly charged ions, i.e. ,
K.E. = W
Rearrange the above equation in terms of T :
Substitute the suitable values in the above equation.
T = 7.96 x 10⁴ K
Answer:
The amount of force and the angle between them.
Explanation:
Answer:
22kj
Explanation:
set h = 0 at the end of slide.
final height is -12m
initial condition will be Ui = 0
Ki = 1/2mv² = 1/2 x 61 x (27)² = 22234.5J
Final condition is Ui = mgh = 61 x 9.8 x -12 = -7173J
Ki = 1/2mv²
Ki= 1/2 x 61 x (16)² = 7808J
conservation energy says that
Ui + Ki = Uf +Kf +ΔEth
so ΔEth = Ui + Ki - Uf - Kf
ΔEth = 22234.5 - 7808 + 7173
ΔEth = 21600J
ΔEth =22Kj