The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N.
<span>Fx = [(233 + 840)/g]*v²/7.5 </span>
<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>
<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>
<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>
<span>233 + 840 = Ti*cos40º </span>
<span>solve for Ti. (This is the answer to the part b) </span>
<span>Horizontally </span>
<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>
<span>Solve for Th </span>
<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>
<span>using v and Ti computed above.</span>
Answer:
letter C. velocity hope this helps
Answer:
1020 km
Explanation:
A complete rotation of the wheel equals a distance of 1 circumference.
The circumference is
where <em>d</em> is the diameter of the wheel.
300,000 rotations =
In kilometers, this is = 1017876/1000 km = 1020 km
Dispersion occurs due to the different degrees of refraction experienced by different colours of light. Light of different colours may travel with the same speed in a vacuum, but they travel at different speeds in some refracting medium. The speed of violet light is relatively lower than that of red light.