Kinetic energy = 0.5 * m * v²
m mass
v velocity
If the velocity stays the same and the kinetic energy goes down by a factor of 2, the mass must go down by a factor of 2 also.
Answer:
Up first are Mercury and Venus. Neither of them has a moon. Because Mercury is so close to the Sun and its gravity, it wouldn't be able to hold on to its own moon. Any moon would most likely crash into Mercury or maybe go into orbit around the Sun and eventually get pulled into it.
Answer:
3.46 seconds
Explanation:
Since the ball is moving in circular motion thus centripetal force will be acting there along the rope.
The equation for the centripetal force is as follows -
Where, is the mass of the ball, is the speed and is the radius of the circular path which will be equal to the length of the rope.
This centripetal force will be equal to the tension in the string and thus we can write,
and,
Thus, m/s.
Now, the total length of circular path = circumference of the circle
Thus, total path length = 2πr = 2 × 3.14 × 2 = 12.56 m
Time taken to complete one revolution = = = 3.46 seconds.
Thus, the mass will complete one revolution in 3.46 seconds.
Explanation:
We Know That
POTENTIAL ENERGY= MASS*g*HEIGHT
When the objects are lifted to same height then the object with heavier mass would have the highest potential energy
.