Answer:
∆H = negative and ∆S = positive.
Explanation:
The reaction given in the question is spontaneous at room temperature ,
hence ,
The the gibbs free energy , i.e. ,∆G will be negative for spontaneous reaction
According to the formula ,
∆G = ∆H -T∆S
The value of ∆G can be negative , if ∆H has a negative value and ∆S has a positive value , because , T∆S , has a negative sign .
Hence , the answer will be , ∆H = negative and ∆S = positive.
it has an electrons in a fixed path together on energy levels.
Answer:
A particle
Explanation:
Modern quantum theory holds that light has both wave-like and particle-like properties. When the length scales involved are large compared to the wavelengths of light (ex., forming images with thin lenses), the
particle nature of light dominates.
Answer:
Explanation:
Hello,
In this case, by considering the given seminormal solution, we infer it is a 0.5-N solution which means that we can obtain the equivalent grams as shown below for the 55 cc (0.055 L) volume:
Next, since sodium carbonate has two sodium ions with a +1 oxidation state each, we can obtain the moles:
Finally, the mass is computed by using its molar mass (106 g/mol)
Regards.
Answer:
Mass = 141.6 g
Explanation:
Given data:
Mass of Kr in gram = ?
Volume in L = 9.59 L
Temperature = 46.0°C
Pressure = 4.62 atm
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will convert the temperature.
46.0+273 = 319 K
4.62 atm × 9.59 L = n× 0.0821 atm.L/ mol.K ×319 K
44.3 atm.L = n×26.19 atm.L/ mol
n = 44.3 atm.L / 26.19 atm.L/ mol
n = 1.69 mol
Mass in gram:
Mass = number of moles × molar mass
Mass = 1.69 mol × 83.79 g/mol
Mass = 141.6 g