I think i used calulater and it gives me 47.5
Answer:
They collide, couple together, and roll away in the direction that <u>the 2m/s car was rolling in.</u>
Explanation:
We should start off with stating that the conservation of momentum is used here.
Momentum = mass * speed
Since, mass of both freight cars is the same, the speed determines which has more momentum.
Thus, the momentum of the 2 m/s freight car is twice that of the 1 m/s freight car.
The final speed is calculated as below:
mass * (velocity of first freight car) + mass * (velocity of second freight car) = (mass of both freight cars) * final velocity
(m * V1) + (m * V2) = (2m * V)
Let's substitute the velocities 1m/s for the first car, and - 2m/s for the second. (since the second is opposite in direction)
We get:
solving this we get:
V = - 0.5 m/s
Thus we can see that both cars will roll away in the direction that the 2 m/s car was going in. (because of the negative sign in the answer)
Answer:
i. 0.34
ii. 0.4
iii. 1700 w/m²
iv. 2211.36 w/m²
Explanation:
Given that
Irradiation of the plate, G = 2500 w/m²
Reflected rays, p = 500 w/m²
Emissive power, E = 1200 w/m²
See attachment for calculations
Answer:
A wet body has a relatively high concentration of water. When this is transferred to a towel, the large surface area of the towel fabric distributes the water molecules over a much greater surface area, so the relative concentration is lower.
Answer:
Q1: 3.2km
Q2: 4.8K
Explanation:
Q1:
So db is the distance of bird, and dr is the distance of runner
db = 2vr and the distance of bird is going to be 2 times greater than the runner.
formulas: db = 2vr & db = 2dr
- db = 2dr
- L + (L - x) = 2x
- 2L - x = 2x
- 2L = 3x
- x = L
Insert it in x = L
(2.4km) = 1.6km
Now we use formula db = 2dr
- db = 2L - x
- db = 2(2.4km) - 1.6km
- <u>db = 3.2km</u>
Q2:
Formulas: Vr = L /Δt & Vb = db/Δt
- Vr = L/ Δt ⇒ Δt =
(Km cancel each other)
- Vb = db/Δt ⇒ db = VbΔt
- 13.6km/hr
- <u>4.8km</u>
(hr cancel each other)
Hope it helps you :)