Answer:
c. You would weigh less on planet A because the distance between
you and the planet's center of gravity would be smaller.
Explanation:
The statement that best describes your weight on each planet is that you would weigh less on planet A because the distance between you and the planet's center of gravity would be smaller.
- This is based on Newton's law of universal gravitation which states that "the force of gravity between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distances between them".
Since weight is dependent on the force of gravity and mass, the planet with more gravitational pull will have masses on them weighing more.
- Since the distance between the person and the center of the planet is smaller, therefore, the weight will be lesser.
Answer:
jnfal4u4ryhfsbjls5
Explanation:
duehdakjweyedufkbshegygfr
the answer is 0.284 lb/in3
Answer:
1.97×10⁻²¹ J
Explanation:
Use ideal gas law to find temperature.
PV = nRT
(9 atm) (9 L) = (83.3 mol) (0.0821 L·atm/mol/K) T
T = 11.9 K
The average kinetic energy per atom is:
KE = 3/2 kT
KE = 3/2 (1.38×10⁻²³ J/K) (11.9 K)
KE = 2.46×10⁻²² J
For a mass of 5.34×10⁻²⁶ kg, the kinetic energy is:
KE = (5.34×10⁻²⁶ kg) (1 mol / 0.004 kg) (6.02×10²³ atom/mol) (2.46×10⁻²² J)
KE = 1.97×10⁻²¹ J