A possible cause of a large percentage of error in an
experiment where MgO is produced from the combustion of magnesium would be not all of the Mg has
completely reacted. <span>
I hope this helps and if you have any further questions, please don’t hesitate
to ask again. </span>
1. Solids
- definite volume & shape
- little energy
-vibrate in place
- very incompressible
2. Liquids
- held together yet can still flow
Answer: 1.27 bar
Explanation:
1 atm = 1.01325 bar
1.25 atm = Z (let Z be the unknown value)
To get the value of Z, cross multiply
Z x 1 atm = 1.25 atm x 1.01325 bar
1 atm•Z = 1.2665625 atm•bar
To get the value of Z, divide both sides by 1 atm
1 atm•Z/1 atm = 1.2665625 atm•bar/1atm
Z = 1.2665625 bar
(Round up Z to the nearest hundredth as 1.27 bar)
Thus, 1.25 atm when coverted gives 1.27 bar
Answer:
SN2
Explanation:
The first step of ether cleavage is the protonation of the ether since ROH is a better leaving group than RO-.
The second step of the reaction may proceed by either SN1 or SN2 mechanism depending on the structure of the ether. Methyl and primary ethers react with HI by SN2 mechanism while tertiary ethers react with HI by SN1 mechanism. Secondary ethers react with HI by a mixture of both mechanisms.
Dipentyl ether is a primary ether hence when treated with HI, the reaction with HI proceeds by SN2 mechanism as explained above.
They turn litmus paper blue.