Since volume and temperature are constant, this means that pressure and <u>number of moles</u> are <u>directly </u>proportional. the sample with the largest <u>number of moles</u> will have the <u>high </u>pressure.
Since, the ideal gas equation is also called ideal gas law. So, according to ideal gas equations,
PV = nRT
- P is pressure of the sample
- T is temperature
- V is volume
- n is the number of moles
- R is universal gas constant
At constant volume and temperature the equation become ,
P ∝ nR
since, R is also constant. So, conclusion of the final equation is
P ∝ n
The number of moles and pressure of the sample is directly proportion. So, on increasing number of moles in the sample , pressure of the sample also increases.
learn about ideal gas law
brainly.com/question/4147359
#SPJ4
Answer:
It decreases
Explanation:
As one moves from left to right on the periodic table, the radius of atoms reduces due to the nuclear pull.
- The size of an atom estimated by the atomic radius is taken as half of the internuclear distance between the two covalently bonded atoms of non-metallic elements.
- Across a period, atomic radius decreases progressively from left to right.
- This is due to the increasing nuclear charge without attendant increase in the number of electronic shell.
Answer:
The melting point of a substance is the temperature at which it change state from solid to liquid is called crystallization point.
Explanation:
When a metal replaces another metal in solution, we say such a reaction has undergone a single displacement reaction.
In such a reaction, metal higher up in the activity series replaces another one due to their position.
To known the metal or metals that will replace the given copper, we need to reference the activity series of metals.
Every metal higher than copper in the series will displace copper from the solution.
So, there metals are: potassium, sodium, lithium, barium, strontium etc.