Answer:
It takes millions sometimes hundreds of millions Explanation:
The net force acting on the airplane is 25N.
Forces acting on the paper airplane when it is in the air:
- The forward force generated by the engine, propeller, or rotor is called thrust. It resists or defeats the drag force. It operates generally perpendicular to the longitudinal axis. However, as will be discussed later, this is not always the case.
- Drag is an airflow disruption generated by the wing, rotor, fuselage, and other projecting surfaces that causes a backward, decelerating force. Drag acts backward and perpendicular to the relative wind, opposing thrust.
- Weight is the total load carried by airplane, including the weight of the crew, fuel, and any cargo or baggage. Due to the influence of gravity, weight pulls the airplane downward.
- Lift—acts perpendicular to the flight path through the center of lift and opposes the weight's downward force. It is produced by the air's dynamic influence on the airfoil.
Given.
Weight of the paper airplane, F1 = 16N
The force of air resistance, F2 = 9N
Net force = F1 + F2
Net force = 25N
Thus, the net force acting on the airplane is 25N.
Learn more about the net force here:
brainly.com/question/18109210
#SPJ1
Answer:
a) α = 0.338 rad / s² b) θ = 21.9 rev
Explanation:
a) To solve this exercise we will use Newton's second law for rotational movement, that is, torque
τ = I α
fr r = I α
Now we write the translational Newton equation in the radial direction
N- F = 0
N = F
The friction force equation is
fr = μ N
fr = μ F
The moment of inertia of a saying is
I = ½ m r²
Let's replace in the torque equation
(μ F) r = (½ m r²) α
α = 2 μ F / (m r)
α = 2 0.2 24 / (86 0.33)
α = 0.338 rad / s²
b) let's use the relationship of rotational kinematics
w² = w₀² - 2 α θ
0 = w₀² - 2 α θ
θ = w₀² / 2 α
Let's reduce the angular velocity
w₀ = 92 rpm (2π rad / 1 rev) (1 min / 60s) = 9.634 rad / s
θ = 9.634 2 / (2 0.338)
θ = 137.3 rad
Let's reduce radians to revolutions
θ = 137.3 rad (1 rev / 2π rad)
θ = 21.9 rev
Mass extinction occur from natural disasters, such as a n asteroid hitting earth or a volcano errupting and spread ash everywhere.
It makes sense to measure geologic time between mass extinctions because after each mass extinction, there is almost no life left and the few left have to repopulate, which may lead way to new mutations and new varieties of plants and animals.
<span />