Answer:
attached below
Explanation:
Structure of two acyclic compounds with 3 or more carbons that exhibits one singlet in 1H-NMR spectrum
a) Acetone CH₃COCH₃
Attached below is the structure
b) But-2-yne (CH₃C)₂
Attached below is the structure
¹/3 C3H8(g) + ⁵/3 O2(g)
Explanation:
The coefficient before every molecule is representative of the number of moles. We can represent it in ration form so as to calculate the question;
C₃H₈(g) + 5 O₂(g) → 3 CO₂(g) + 4 H₂O(l) means;
For every 1 mole of C₃H₈(g) and 5 moles of O₂(g) produces 3 moles of CO₂(g) and 4 moles of H₂O(l).
Therefore to produce 1.00 mole of CO₂(g);
We represent it in ratio;
C₃H₈(g) : CO₂(g)
1 : 3
What about ;
? (x) : 1
We cross multiply;
3x = 1 * 1
X = 1/3
We evaluate the same for O₂;
O₂(g) : CO₂(g)
5 : 3
What about
? (x) : 1
3x = 5 * 1
x = 5/3
Learn More:
For more on evaluating moles in chemical reactions check out;
brainly.com/question/13967925
brainly.com/question/13969737
#LearnWithBrainly
Answer:
An Arrhenius base is a substance that dissociates in water to form hydroxide (OH–) ions. In other words, a base increases the concentration of OH– ions in an aqueous solution.
<h3>
Answer:</h3>
0.35 M
<h3>
Explanation:</h3>
<u>We are given;</u>
- Initial volume as 35.0 mL or 0.035 L
- Initial molarity as 12.0 M
- Final volume is 1.20 L
We are required to determine the final molarity of the solution;
- Dilution involves adding solvent to a solution to make it more dilute which reduces the concentration and increases the solvent while maintaining solute constant.
- Using dilution formula we can determine the final molarity.
M1V1 = M2V2
M2 = M1V1 ÷ V2
= (12.0 M × 0.035 L) ÷ 1.2 L
= 0.35 M
Thus, the final concentration of the solution is 0.35 M