Answer:t=0.81 s
Explanation:
Given
Penguin slides down with constant velocity of 3.57 m/s
as the Penguin Slides with constant velocity therefore is zero on Penguin
friction Force
coefficient of Kinetic friction
after reaching on floor final velocity of penguin will be zero after time t
thus
here
(deceleration)
It holds more weight in the regular water.
<span>118 C
The Clausius-Clapeyron equation is useful in calculating the boiling point of a liquid at various pressures. It is:
Tb = 1/(1/T0 - R ln(P/P0)/Hvap)
where
Tb = Temperature boiling
R = Ideal Gas Constant (8.3144598 J/(K*mol) )
P = Pressure of interest
Hvap = Heat of vaporization of the liquid
T0, P0 = Temperature and pressure at a known point.
The temperatures are absolute temperatures.
We know that water boils at 100C at 14.7 psi. Yes, it's ugly to be mixing metric and imperial units like that. But since we're only interested in relative pressure differences, it's safe enough. So
P0 = 14.7
P = 14.7 + 12.3 = 27
T0 = 100 + 273.15 = 373.15
And for water, the heat of vaporization per mole is 40660 J/mol
Let's substitute the known values and calculate.
Tb = 1/(1/T0 - R ln(P/P0)/Hvap)
Tb = 1/(1/373.15 K - 8.3144598 J/(K*mol) ln(27/14.7)/40660 J/mol)
Tb = 1/(0.002679887 1/K - 8.3144598 1/K ln(1.836734694)/40660)
Tb = 1/(0.002679887 1/K - 8.3144598 1/K 0.607989372/40660)
Tb = 1/(0.002679887 1/K - 5.055103194 1/K /40660)
Tb = 1/(0.002679887 1/K - 0.000124326 1/K)
Tb = 1/(0.002555561 1/K)
Tb = 391.3034763 K
Tb = 391.3034763 K - 273.15
Tb = 118.1534763 C
Rounding to 3 significant figures gives 118 C</span>
Answer:
The weight acting upon a object
Explanation:
2^4/2^7 = 16/128 = 0.125
(1/2)^3= 0.125
1/8= 0.125
a and f are equivalent