Answer:
magnitude: 21.6; direction: 33.7 degrees
Explanation:
When we multiply a vector by a scalar, we have to multiply each component of the vector by the scalar number. In this case, we have
vector: (-3,-2)
Scalar: -6
so the vector multiplied by the scalar will have components
The magnitude is given by Pythagorean's theorem:
and the direction is given by the arctan of the ratio between the y-component and the x-component:
Potential energy behind dams
Answer:Let m = mass of asteroid y.Because asteroid y has three times the mass of asteroid z, the mass of asteroid z is m/3.Given:F = 6.2x10⁸ Nd = 2100 km = 2.1x10⁶ mNote thatG = 6.67408x10⁻¹¹ m³/(kg-s²)The gravitational force between the asteroids isF = (G*m*(m/3))/d² = (Gm²)/(3d²)orm² = (3Fd²)/G = [(3*(6.2x10⁸ N)*(2.1x10⁶ m)²]/(6.67408x10⁻¹¹ m³/(kg-s²)) = 1.229x10³² kg²m = 1.1086x10¹⁶ kg = 1.1x10¹⁶ kg (approx)Answer: 1.1x10¹⁶ kg
Explanation:
Because the more advances made in the world means the more we can learn on how things work and how we can better the lives of humans and other species. If we didn't have scientific advancements we wouldn't have cell phones, electric, tv, car, computers, ect. We would still be living in Cave man era with clubs and horrible language skills.
Answer:
c. V = 2 m/s
Explanation:
Using the conservation of energy:
so:
Mgh =
where M is the mass, g the gravity, h the altitude, I the moment of inertia of the pulley, W the angular velocity of the pulley and V the velocity of the mass.
Also we know that:
V = WR
Where R is the radius of the disk, so:
W = V/R
Also, the moment of inertia of the disk is equal to:
I =
I =
I = 10 kg*m^2
so, we can write the initial equation as:
Mgh =
Replacing the data:
(5kg)(9.8)(0.3m) =
solving for V:
(5kg)(9.8)(0.3m) =
V = 2 m/s