D.all of the above is the answer for this question
Answer:
-7.89 * 10^(-9) C
Explanation:
Parameters given:
q1 = 2.42 nC = 2.42 * 10^(-9) C
Distance between q1 and q2 = 5.33 m
q3 = 1.0 nC = 1 * 10^(-9) C
Distance between q1 and q3 = 1.9 m
Distance between q2 and q3 = 5.33 - 1.9 = 3.43 m
The net force acting on q3 is:
F = F(q1, q3) + F(q2, q3)
F = (k*q1*q3)/1.9² + (k*q2*q3)/3.43²
F = (9 * 10^(9) * 2.42 * 10^(-9) * 1 * 10^(-9))/3.61 + (9 * 10^(9) * q2 * 1 * 10^(-9))/11.7649
F = 6.033 * 10^(-9) + 0.765*q2
If the net force is zero:
0 = 6.033 * 10^(-9) + 0.765*q2
-0.765*q2 = 6.033 * 10^(-9)
=> q2 = -[6.033 * 10^(-9)]/0.765
q2 = -7.89 * 10^(-9) C
When light is reflected by a mirror, the angle of incidence is always <span>A. equal to the angle of reflection. We know this by the Law of Reflection.</span>
Answer:
She can swing 1.0 m high.
Explanation:
Hi there!
The mechanical energy of Jane (ME) can be calculated by adding her gravitational potential (PE) plus her kinetic energy (KE).
The kinetic energy is calculated as follows:
KE = 1/2 · m · v²
And the potential energy:
PE = m · g · h
Where:
m = mass of Jane.
v = velocity.
g = acceleration due to gravity (9.8 m/s²).
h = height.
Then:
ME = KE + PE
Initially, Jane is running on the surface on which we assume that the gravitational potential energy of Jane is zero (the height is zero). Then:
ME = KE + PE (PE = 0)
ME = KE
ME = 1/2 · m · (4.5 m/s)²
ME = m · 10.125 m²/s²
When Jane reaches the maximum height, its velocity is zero (all the kinetic energy was converted into potential energy). Then, the mechanical energy will be:
ME = KE + PE (KE = 0)
ME = PE
ME = m · 9.8 m/s² · h
Then, equallizing both expressions of ME and solving for h:
m · 10.125 m²/s² = m · 9.8 m/s² · h
10.125 m²/s² / 9.8 m/s² = h
h = 1.0 m
She can swing 1.0 m high (if we neglect dissipative forces such as air resistance).
D. to be structural material