Answer:
0.1667 m/s
Explanation:
m1V1 + m2V2 = m1V3 + m2V4
0.01 = ( 0.0075) + (0.015 * V4)
V4 = (0.01 - 0.0075) / (0.015)
V4= 0.1667
Answer:
<u>We are given:</u>
initial velocity (u) = 20m/s
acceleration (a) = 4 m/s²
time (t) = 8 seconds
displacement (s) = s m
<u />
<u>Solving for Displacement:</u>
From the seconds equation of motion:
s = ut + 1/2 * at²
replacing the variables
s = 20(8) + 1/2 * (4)*(8)*(8)
s = 160 + 128
s = 288 m
Answer: The drag force goes up by a factor of 4
Explanation:
The <u>Drag Force</u> equation is:
(1)
Where:
is the Drag Force
is the Drag coefficient, which depends on the material
is the density of the fluid where the bicycle is moving (<u>air in this case)
</u>
is the transversal area of the body or object
the bicycle's velocity
Now, if we assume , and do not change, we can rewrite (1) as:
(2)
Where groups all these coefficients.
So, if we have a new velocity , which is the double of the former velocity:
(3)
Equation (2) is written as:
(4)
Comparing (2) and (4) we can conclude<u> the Drag force is four times greater when the speed is doubled.</u>
Answer:
3.6 x 10⁶ Pa
Explanation:
A = Area of the heel = 1.50 cm² = 1.50 x 10⁻⁴ m²
m = mass of the woman = 55.0 kg
g = acceleration due to gravity = 9.8 m/s²
Force of gravity on the heel is given as
F = mg
Inserting the values
F = (55) (9.8)
F = 539 N
Pressure exerted on the floor is given as
P = 3.6 x 10⁶ Pa
Answer:
Mechanical energy
Explanation:
Mechanical energy is needed for movement of objects. Muscles convert chemical energy provided by the rest of the body to allow movement.