"No man is an island.” This saying is also true for organisms in an ecosystem. No organism exists in isolation. Individual organisms live together in an ecosystem and depend on one another. In fact, they have many different types of interactions with each other, and many of these interactions are critical for their survival.
So what do these interactions look like in an ecosystem? One category of interactions describes the different ways organisms obtain their food and energy. Some organisms can make their own food, and other organisms have to get their food by eating other organisms. An organism that must obtain their nutrients by eating (consuming) other organisms is called a consumer, or a heterotroph. While there are a lot of fancy words related to the sciences, one of the great things is that many of them are based on Latin or Greek roots. For example, heterotroph becomes easier to remember when you realize that in Greek, “hetero” means “other” and “troph” means food; in other words, heterotrophs eat other organisms to get their food. They then use the energy and materials in that food to grow, reproduce and carry out all of their life activities. All animals, all fungi, and some kinds of bacteria are heterotrophs and consumers. .
Polar bear are found in the Arctic region. The polar bear feed on fishes, insects etc.
The algae undergoes photosynthesis and produces food through this.The algae is a source of food for the fishes in water. The algae makes the fishes grow and develop after providing it with the nutrients needed to do so.
The fishes are then eaten by the polar bear. Without the algae the fishes may starve and the polar bear may starve to death too due lack of preys such as the fish. This cycle makes the algae a very important source of energy.
Replacing the powdered lead oxide with large crystals
Explanation:
The large crystals have less surface area exposed to the other reagents than the powdered lead oxide. High surface area leads to a high rate of reaction thus the products are formed faster, while a low surface area leads to a lower rate of reaction since the reagent is less exposed to the other reagents.