Answer:
Forces come in pairs, so the force of gravity (9.8 N) with the mans weight (794N) on the earth is counteracted with the normal force ( the force of the earth back on the man) which is the same
Explanation:
a) See free-body diagram in attachment
b) The acceleration is
Explanation:
a)
The free-body diagram of an object is a diagram representing all the forces acting on the object. Each force is represented by a vector of length proportional to the magnitude of the force, pointing in the same direction as the force.
The free-body diagram for this object is shown in the figure in attachment.
There are three forces acting on the object:
- The weight of the object, labelled as (where m is the mass of the object and g is the acceleration of gravity), acting downward
- The applied force, , acting up along the plane
- The force of friction, , acting down along the plane
b)
In order to find the acceleration of the object, we need to write the equation of the forces acting along the direction parallel to the incline. We have:
where:
is the applied force, pushing forward
is the frictional force, acting backward
is the component of the weight parallel to the incline, acting backward, where
m = 2 kg is the mass of the object
is the acceleration of gravity
is the angle between the horizontal and the incline (it is not given in the problem, so I assumed this value)
a is the acceleration
Solving for a, we find:
Learn more about inclined planes:
brainly.com/question/5884009
#LearnwithBrainly
Acceleration can be any change in speed, increasing or decreasing.
You haven't said whether the ball is speeding up or slowing down.
If its acceleration is positive ... speed is increasing ... then in 2.5 seconds,
it GAINS (0.5 m/s² x 2.5 sec) = 2.5 m/s of speed. Added to its initial
speed of 2.0 m/s, it ends up moving at 4.5 m/s.
If its acceleration is negative ... speed is decreasing ... then in 2.5 seconds,
it LOSES (0.5 m/s² x 2.5 sec) = 2.5 m/s of speed. Added to its initial
speed of 2.0 m/s, it ends up moving at -0.5 m/s. That means that it ends up
moving in the opposite direction compared to its direction at the beginning of
the change.