Answer:
A sled and its rider are moving at a speed of along a horizontal stretch of snow, as Figure 4.24a illustrates. The snow exerts a kinetic frictional force on the runners of the sled, so the sled slows down and eventually comes to a stop. The coefficient of kinetic friction is 0.050. What is the displacement x of the sled?
Answer:
14 m/s
Explanation:
Using the principle of conservation of energy, the potential energy is converted to kinetic energy, assuming any losses.
Kinetic energy is given by ½mv²
Potential energy is given by mgh
Where m is the mass, v is the velocity, g is acceleration due to gravity and h is the height.
Equating kinetic energy to be equal to potential energy then
½mv²=mgh
V
Making v the subject of the formula
v=√(2gh)
Substituting 9.81 m/s² for g and 10 m for h then
v=√(2*9.81*10)=14.0071410359145 m/s
Rounding off, v is approximately 14 m/s
Answer:
α=0.625rad/s^2
v=340m/s
w=10rad/s
θ=320rad
Explanation:
Constant angular acceleration = ∆w/∆t
angular acceleration = 20/32
α=0.625rad/s^2
Linear velocity v=wr
v = 20×17= 340m/s
Average angular velocity
w0+w1/2
w= 0+20/2
w= 20/2
w=10rad/s
What angle did it rotate with
θ=wt
θ= 10×32
=320rad
The acceleration due to gravity is less at the top of mt. everest because its so far from the center of the earth .
In step 1, to increase the potential energy, the iron will move towards the electromagnet.
In step 2, to increase the potential energy, the iron will move towards the electromagnet.
<h3>Potential energy of a system of magnetic dipole</h3>
The potential energy of a system of dipole depends on the orientation of the dipole in the magnetic field.
where;
- is the dipole moment
- B is the magnetic field
Increase in the distance (r) reduces the potential energy. Thus, we can conclude the following;
- In step 1, to increase the potential energy, the iron will move towards the electromagnet.
- In step 2, when the iron is rotated 180, it will still maintain the original position, to increase the potential energy, the iron will move towards the electromagnet.
Learn more about potential energy in magnetic field here: brainly.com/question/14383738