The N2H4 bond angle will be probably 109 degrees. Since, well,<span> it has a bent </span>trigonal pyramidal<span> geometry.</span>
Answer:
Explanation:
mole of O₂ =
= .25 moles
mole of CO₂
=
= .1818 moles
moles of SO₂
= .125 moles
Total moles of gas
= .5568 moles.
total volume of gas mixture
= 22.4 x .5568 liter ( volume of one mole of any gas = 22.4 liter)
= 12.47 liter.
gas will exert partial pressure according to their mole fraction
gas having greatest no of moles in the total mole will have greatest mole fraction so
O₂ will have greatest partial pressure.
Answer:
The potential energy decreases whereas the kinetic energy increases.
Answer:
We need 78.9 mL of the 19.0 M NaOH solution
Explanation:
Step 1: Data given
Molarity of the original NaOH solution = 19.0 M
Molarity of the NaOH solution we want to prepare = 3.0 M
Volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
Step 2: Calculate volume of the 19.0 M NaOH solution needed
C1*V1 = C2*V2
⇒with C1 = the concentration of the original NaOH solution = 19.0 M
⇒with V1 = the volume of the original NaOH solution = TO BE DETERMINED
⇒with C2 = the concentration of the NaOH solution we want to prepare = 3.0 M
⇒with V2 = the volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
19.0 M * V2 = 3.0 M * 0.500 L
V2 = (3.0 M * 0.500L) / 19.0 M
V2 = 0.0789 L
We need 0.0789 L
This is 0.0789 * 10^3 mL = 78.9 mL
We need 78.9 mL of the 19.0 M NaOH solution