Hope my answer helped you
25.9 kJ/mol. (3 sig. fig. as in the heat capacity.)
<h3>Explanation</h3>
The process:
.
How many moles of this process?
Relative atomic mass from a modern periodic table:
- K: 39.098;
- N: 14.007;
- O: 15.999.
Molar mass of :
.
Number of moles of the process = Number of moles of dissolved:
.
What's the enthalpy change of this process?
for . By convention, the enthalpy change measures the energy change for each mole of a process.
.
The heat capacity is the least accurate number in these calculation. It comes with three significant figures. As a result, round the final result to three significant figures. However, make sure you keep at least one additional figure to minimize the risk of rounding errors during the calculation.
Answer:
Imo : Gas particles are in constant, random motion. The volume of gas particles is negligible in comparison to the volume of the container. There are no attractive forces between gas particles.
If your options are among the following:
<span>0.64 M 1.0 M 0.32 M 0.16 M.
Then the correct answer is 0.64 M. I hope this is what you were looking for</span>