Answer:
the area of the hexagon is approx. 187.1 in²
Step-by-step explanation:
Picture this regular polygon as being a hexagon made up of six equilateral triangles of side 12 in. We find the area of one such triangle and then multiply that by 6 to obtain the total area of the hexagon.
One such equilateral triangle has three sides all of length 12 in, and all the interior angles are 60°. The height of one such triangle is
h = (12 in)sin 60°, or
√3
h = (12 in) -------- = 6√3 in
2
So, with base 12 in and height 6√3 in, the area of one such equilateral triangle is
A = (1/2)(12 in)(6√3 in) = 36√3 in²
and the total area of the hexagon is 6(36)√3 in², or approx. 187.1 in²
54
A right triangle is a shape that looks like half of a square. The height of the triangle is 12, and the base of the triangle is 9. To find the area, use the following formula:
A =
=
=
= 54
3n-5=-48-40n
Move -40n to the other side. Sign changes from -40n to +40n.
3n+40n-5=-48= -48-40n+40n
3n+40n-5=-48
Move -5 to the other side.
3n+40n-5+5=-48+5
3n+40n=-43
43n=-43
Divide by 43 for both sides
43n/43=-43/43
n=-1
Answer: n=-1
Answer: three pieces.
The piece of wood is 6/8 inches long - this fraction can be simplified to 3/4 by dividing both the numerator and denominator by 2.
Thus, he cuts a piece of wood that is 3/4 inches long into 1/4 inch pieces.
1 goes into 3 three times, so the piece of wood can be cut into three 1/4-inch pieces.
Answer:
The answer is 8 : 22, 12:33 as they are two equelivant ratios 11 and 4