34.95 atm
lol i hope i’m not too late
Answer:
it is a transverse wave. Does that help?
Answer:
Explanation:
13 ) symbol of enthalpy change = Δ H .
14 ) enthalpy change is nothing but heat absorbed or evolved .
During fusion enthalpy change
Δ H .= m Lf , m is mass and Ls is latent heat of fusion
During evaporation, enthalpy change
Δ H .= m Lv , m is mass and Lv is latent heat of evaporation
during temperature rise , enthalpy change
Δ H = m c Δ T
In case of gas , enthalpy change can be calculated by the following relation
Δ H = Δ E + W , Δ E is change in internal energy , W is work done by gas.
15 ) When enthalpy change is negative , that means heat is released to the environment .So reaction is called exothermic .
when heat is absorbed enthalpy change is positive . Reaction is endothermic.
Answer:
b- The heat capacity ratio increases but output temperature don’t change
Explanation:
The heat capacity is the amount of energy required to raise the temperature of a body, by 1 degree. On the other hand, the specific heat capacity is the amount of heat required to raise the temperature of a of unit mass of a material by 1 degree.
Heat capacity is an extensive property meaning its value depends on the amount of material. Specific heat capacity is found by dividing heat capacity by the mass of the sample, thus making it independent of the amount (intensive property). So if the specific heat capacity increases and the mass of the sample remains the same, the heat capacity must increase too. Because of that options c and d that say that heat capacity reamins same are INCORRECT.
On the other hand, in which has to be with options a and b both say that the heat capacity increases which is correct, but about the output temperatures what happens is that if we increase the specific heat capacity of both fluids that are involved in a process of heat exchange in the same value, the value of the output temperatures do not change so only option a is CORRECT.