Answer:
9.2
Explanation:
Let's do an equilibrium chart of this reaction:
2NO(g) + O₂(g) ⇄ 2NO₂(g)
4.9 atm 5.1 atm 0 Initial
-2x -x +2x Reacts (stoichiometry is 2:1:2)
4.9-2x 5.1-x 2x Equilibrium
The mole fraction of NO₂ (y) can be calculated by the Raoult's law, that states that the mole fraction is the partial pressure divided by the total pressure:
y = 2x/(4.9 - 2x + 5.1 -x + 2x)
0.52 = 2x/(10 - x)
2x = 5.2 -0.52x
2.52x = 5.2
x = 2.06 atm
Thus, the partial pressure at equilibrium are:
pNO = 4.9 -2*2.06 = 0.78 atm
pO₂ = 5.1 - 2.06 = 3.04 atm
pNO₂ = 2*2.06 = 4.12 atm
Thus, the pressure equilibrium constant Kp is:
Kp = [(pNO₂)²]/[(pNO)²*(pO₂)]
Kp = [(4.12)²]/[(0.78)²*3.04]
Kp = [16.9744]/[1.849536]
Kp = 9.2
Answer:
A. for K>>1 you can say that the reaction is nearly irreversible so the forward direction is favored. (Products formation)
B. When the temperature rises the equilibrium is going to change but to know how is going to change you have to take into account the kind of reaction. For endothermic reactions (the reverse reaction is favored) and for exothermic reactions (the forward reaction is favored)
Explanation:
A. The equilibrium constant K is defined as
In any case
aA +Bb equilibrium Cd +dD
where K is:
[] is molar concentration.
If K>>> 1 it means that the molar concentration of products is a lot bigger that the molar concentration of reagents, so the forward reaction is favored.
B. The relation between K and temperature is given by the Van't Hoff equation
Where: H is reaction enthalpy, R is the gas constant and T temperature.
Clearing the equation for we get:
Here we can study two cases: when delta is positive (exothermic reactions) and when is negative (endothermic reactions)
For exothermic reactions when we increase the temperature the denominator in the equation would have a negative exponent so is greater that and the forward reaction is favored.
When we have an endothermic reaction we will have a positive exponent so will be less than the forward reactions is not favored.
From among the subatomic particles available, we determine which element is presented by using the number of protons. The 49th element in the periodic table is Indium (In). The chemical symbol is In-62. 62 is the number representing the number of neutrons .
Answer: In-62
N₂ : limiting reactant
H₂ : excess reactant
<h3>Further e
xplanation</h3>
Given
mass of N₂ = 100 g
mass of H₂ = 100 g
Required
Limiting reactant
Excess reactant
Solution
Reaction
<em>N₂+3H₂⇒2NH₃</em>
mol N₂(MW=28 g/mol) :
mol H₂(MW= 2 g/mol) :
A method that can be used to find limiting reactants is to divide the number of moles of known substances by their respective coefficients, and small or exhausted reactans become a limiting reactants
From the equation, mol ratio N₂ : H₂ = 1 : 3, so :
N₂ becomes a limiting reactant (smaller ratio) and H₂ is the excess reactant