Answer:
Horizontal translation of six units
Explanation:
Answer:
Explanation:
This is going to sound like an absurd answer, but sometimes physics can be a little strange.
This answer is weird because of the definition of displacement. It means the distance from the starting point to the ending point, disregarding what happened in between. The point is that the astronaut is at the starting point of his orbit. By definition the starting and ending points are the same. His displacement is 0.
So the answer is you have the greater displacement when you walked one way to school. The starting point and the ending point are different. You have gone further.
However just to make things a little nasty, when you walk home again, your displacement will be the same as the astronaut's -- 0 meters because you will be right back where you started from.
Answer:
Explanation:
Moving a magnet might cause a change in the magnetic field going through the solenoid. Whether or not it will change depends on the movement.
According to Faraday's law of induction a voltage is induced in a coil by a change in the magnetic flux. Magnetic flux is defined as the dot product of the magnetic field (a vector field) by the area enclosed by a loop of the coil.
The voltage is induced by the variation of the magnetic flux:
Where
ε: electromotive fore
N: number of turns in the coil
ΦB: magnetic flux
Moving the magnet faster would increase the rare of change of the magnetic flux, resulting in higher induced voltage.
Turning the magnet upside down would invert the direction of the magnetic field, reversing the voltage induced.
The radiations detected by Arno Penzias and Robert Wilson
were the original heat from the Big Bang.
Today, we call those waves the "Cosmic Microwave Background".
I'm not sure, but I think those guys were awarded a Nobel Prize in Physics
for that discovery.
Explanation:
A) Use Hooke's law to find the spring constant.
F = kx
40 N = k (0.4 m)
k = 100 N/m
B) Period of a spring-mass system is:
T = 2π √(m / k)
T = 2π √(2.6 kg / 100 N/m)
T = 1 s
Frequency is the inverse of period.
f = 1 / T
f = 1 Hz