molar concentration of AgNO₃ solution = 0.118 mole/L
Explanation:
Because we have the volume of the solution and there is no information about the density of the solution I will asume that you ask for the molar concentration.
number of moles = mass / molecular weight
number of moles of AgNO₃ = 10 / 170 = 0.0588
molar concentration = number of moles / volume (L)
molar concentration of AgNO₃ solution = 0.0588 / 0.5
molar concentration of AgNO₃ solution = 0.118 mole/L
Learn more about:
molar concentration
brainly.com/question/1286583
#learnwithBrainly
Answer:
transferred
Energy
Explanation:
Energy is the ability to change the state of bringing about a work leading to movement or generating electromagnetic radiation. There are actually many forms of energy. So, kinetic energy is a form of energy related to the movement of a body. The combustion, in turn, retrieves the potential energy chemical contained in fuels. Solar panels capture light energy to transform it into electrical energy.
111.1 mL of water
Explanation:
Weight per volume concentration (w/v %) is defined as
weight per volume concentration = (mass of solute (g) / volume of solution (mL)) × 100
volume of solution = (mass of solute × 100) / weight per volume concentration
volume of solution = (1 × 100) / 0.9 = 111.1 mL
volume of water = volume of solution = 111.1 mL
Learn more about:
weight per volume concentration
brainly.com/question/12721794
#learnwithBrainly
Answer:
10−8 M.
Explanation:
In this problem we are given pH and asked to solve for the hydrogen ion concentration. Using the equation, pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10−pH,
by exponentiating both sides with base 10 to "undo" the common logarithm. The hydrogen ion concentration of blood with pH 7.4 is,
[H+] = 10−7.4 ≈ 0.0000040 = 4.0 × In this problem we are given pH and asked to solve for the hydrogen ion concentration. Using the equation, pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10−pH,
by exponentiating both sides with base 10 to "undo" the common logarithm. The hydrogen ion concentration of blood with pH 7.4 is,
[H+] = 10−7.4 ≈ 0.0000040 = 4.0 × 10−8 M.
Hydrophilic - attracted to water
Hydrophobic - resists water