Answer: 1.8 g
Explanation:
We start first, by calculating the amount of Helium
n = m/M
m = mass of Helium
M = molar mass if Helium
n = 2/4 = 0.5 moles
proceeding further, we use ideal gas law. PV = nRT
Then we have
P1V1/n1T1 = P2V2/n2T2
So that,
n2 = n1T1P2V2/P1V1T2
From the question, we know that, P1 = P2, and T1 = T2. So that,
n2 = n1v2/v1
n2 = (0.5 * 3.9) / 2
n2 = 1.95/2
n2 = 0.975 moles. With this, we can determine the mass, m2 of Helium
n = m/M
m = n * M
m = 0.975 * 3.9
m = 3.8
The difference between both masses are 3.8 - 2 = 1.8 g
Thus, 1.8 g of Helium was added to the cylinder
Answer:
The power she can generate is 185.22 KW.
Explanation:
<h3><u>DATA</u></h3>
3.00m wide and 0.500m deep.
Cross sectional area = 1.500m^2
Velocity = 1.35m/s
Volumetric flow rate = Av = 18.00m^3/s
Mass flow rate = 18,000kg/s
Height = 4.20m
25.0% efficiency
<h3><u>
FORMULA:</u></h3>
P = dE / dt * eff
<h3><u>
SOLUTION:</u></h3>
18,000kg/s (9.8m/s^2) (4.20m) (25%) = 185,220 watts
= 185 kw
Measuring the Volume of Solids. The volume of solids is expressed in cubic measurements, such as cubic centimeter or cubic meter.
Answer:
Capacitive Reactance is 4 times of resistance
Solution:
As per the question:
R =
where
R = resistance
f = fixed frequency
Now,
For a parallel plate capacitor, capacitance, C:
where
x = separation between the parallel plates
Thus
C ∝
Now, if the distance reduces to one-third:
Capacitance becomes 3 times of the initial capacitace, i.e., x' = 3x, then C' = 3C and hence Current, I becomes 3I.
Also,
Also,
Z ∝ I
Therefore,
Solving the above eqn:
Answer:
Bar graph
Explanation:
each day collects data so a bar graph would work.