Answer:
No, the acceleration is not always zero.
Explanation:
It does not mean that the acceleration of the particle is zero.
The velocity of wave is different from the velocity of particle.
The acceleration of wave is different from the acceleration of particle.
the acceleration of the particle is given by
where, w is the angular frequency and y is the displacement from the mean position.
So, the acceleration is zero at mean position only and it varies as the position changes.
Answer:
(a) The resistance of 25m of wire is 3 ohms
(b) the length of this wire that has resistance 22 ohms is 183.33 m
Explanation:
Given;
resistivity of the wire, ρ = 0.12 ohms per meter
(a) The resistance of 25m of wire is calculated as follows;
(b) the length of this wire that has resistance 22 ohms is calculated as;
Explanation:
<h2><u>Steps </u><u>:</u></h2>
- <u>Move </u><u>decimal</u><u> </u><u>from</u><u> </u><u>left </u><u>to </u><u>right</u><u> </u><u>=</u><u>0</u><u> </u><u>0</u><u>0</u><u>0</u><u>0</u><u>0</u><u>0</u><u>2</u><u>4</u><u>0</u><u>.</u><u>0</u>
- <u>Then </u><u>count </u><u>the</u><u> </u><u>numbers</u><u> </u><u>before</u><u> </u><u>decimal </u><u>and </u><u>w</u><u>rite </u><u>it </u><u>like</u><u> </u><u>this </u><u>=</u><u>2</u><u>4</u><u>0</u><u>.</u><u>0</u><u>x</u><u>1</u><u>0</u><u> </u><u>power-</u><u>9</u><u> </u>
- <u>That's</u><u> </u><u>all </u>
<u>hope</u><u> it</u><u> </u><u>help</u>
<h2><u>#</u><u>H</u><u>o</u><u>p</u><u>e</u></h2>
Answer:
See the explanation below
Explanation:
There are several measures for the international system of measures. Let's name some and their representation symbol.
meter = [m]
time = [s] = seconds
mass = [kg] = kilograms
Temperature = [°C] = celcius degrees
Power = [W] = watts.
Force = [N] = Newtons
First we need to find the speed of the dolphin sound wave in the water. We can use the following relationship between frequency and wavelength of a wave:
where
v is the wave speed
its wavelength
f its frequency
Using
and
, we get
We know that the dolphin sound wave takes t=0.42 s to travel to the tuna and back to the dolphin. If we call L the distance between the tuna and the dolphin, the sound wave covers a distance of S=2 L in a time t=0.42 s, so we can write the basic relationship between space, time and velocity for a uniform motion as:
and since we know both v and t, we can find the distance L between the dolphin and the tuna: